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THE EFFECT OF BUOYANCY
ON THE FORMATION OF A SOLID DEPOSIT
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Abstract—The growth rate and spatial distribution of a solid deposit freezing onto a vertical surface is
analytically predicted for the case in which there is heat transfer at the moving phase interface due to
natural convection in the fluid. It is shown that under certain conditions the problem may be treated as
involving a transient, one-dimensional conduction process and a quasi-steady two-dimensional convection
process which are coupled through the requirements of conservation of mass and energy at the phase
interface. An approximate solution is obtained using integral techniques and results are in agreement with

those limiting cases for which exact solutions are known.

NOMENCLATURE t, time;

¢, specific heat; T, temperature ;
e, internal energy per unit mass; u, v, fluid velocity components in the x-
g, gravitational acceleration ; and y-directions respectively;
Gr, Grashof number, gB(T,, — T)L*/v?; U,V¥, dimensionless w,v as defined by
h, convective film coefficient ; equations (14);
h, enthalpy per unit mass; w, dimensionless parameter defined by
H, dimensionless convective film co- equation (26);

efficient, h(x, t)/h(L, o0); X, ¥, Cartesian coordinates along the
k, thermal conductivity; plate surface and normal to it
L, plate length; respectively;
&, latent heat of fusion per unit mass; Zz, dimensionless distance along the
m, interface velocity distribution para- plate, (x/L)"*%;

meter;
Nu, Nusselt number, h(L, 0)L/k; Greek symbols
D static pressure; o, thermal diffusivity;
P, dimensionless pressure, p/p,; B, dimensionless conduction—convec-
Pr, Prandtl number, v/x; tion process coupling parameter,
q, convective heat flux at the phase n/pc(T, — Tp);

interface; 5, A, dimensionless boundary layer thick-
s, solid phase thickness; nesses for the velocity and thermal
S, interface velocity amplitude para- fields respectiyely defined after equa-

meter defined by equation (29); tion (30b);
. ‘ ' 1, dimensionless y-coordinate defined

079‘8113’e1111"£.e:phone Laboratories, Whippany, New Jersey by equa.ltion (31);
t New York University, University Heights, Bronx, New 0> dimensionless temperature,
York, US.A. (T, — TAT, — T));
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U, dimensionless y-coordinate defined
by equation (14);

v, kinematic viscosity;

g, dimensionless x-coordinate, x/L;

m, dimensionless conduction—convec-
tion process coupling parameter de-
fined by equation (24);

P, density;

o, dimensionless solid phase thickness,

s(x, t)/s(L, o0);

T, dimensionless time, o t/s(L, oc)?;

v, dimensionless y-coordinate defined
by equation (31);

Q ratio of the thermal to velocity

boundary layer thickness, A/o.

Vector quantities

VvV, Del operator;

f, body force per unit mass;

i,j, o,n, unit vectors defined by Fig. 1;
T, shear stress vector;

W, fluid velocity vector.

Subscripts
0,

property values without a subscript
refer to the fluid phase;

Of () evaluated at the phase interface;

O coefficient of Z" in series representa-
tion of (};

Oos () relative to the moving interface
evaluated at the interface;

O)p () evaluated at the plate surface;

Ogs () relative to the moving interface;

Os property values of the solid phase;

(e local, instantaneous value of () based

on x as the reference length in
dimensionless quantities;

() evaluated at a large distance from
the plate.

()(x/’

INTRODUCTION

THe EFFecTS of fluid motion in melting and
freezing processes are of interest in a variety of
applications ranging from metal processing to
cryogenics and aerospace technology. Problems
associated with such processes which involve

simultaneous heat transfer and phase change
and where both the temperature distribution
and the motion of the phase interface must be
determined are commonly referred to as *““Stefan-
like” problems. In general, the system of
equations describing such phenomena is non-
linear. With the exception of a few cases [1]
involving simple boundary and initial condi-
tions. no exact solutions have been-obtained.
For more complex situations, a variety of
numerical, analog, and approximate solutions
have appeared. A detailed review of the litera-
ture has been published by Muehlbauer and
Sunderland [2].

Analyses considering the effects of convection
on the freezing process have appeared only
within the last few years. A brief review of these
efforts is presented in [3]. Included are several
approximate solutions [4-7] for determining
the effect of convection near the moving phase
interface. These all assume that the convective
heat flux is known in advance. However, no
general method for determining this flux was
available. One objective of the present in-
vestigation, therefore, was to obtain an analytic
estimate for the rate of convective heating due
to natural convection at the phase interface
in the case of a solid being deposited on a
vertical, isothermal surface.

In comparison with times of interest in
melting and freezing processes, natural con-
vective transients are often of negligible dura-
tion. From the point of view of an observer
moving with the phase interface however the
fluid would appear to be moving into the solid
surface at a time varying rate. It is well known
[8] that large changes in the rate of convective
heat transfer to a surface can be produced by
small rates of suction at that surface. Motivated
by these considerations, a dimensional analysis
of the complete set of governing equations was
undertaken. The results show that the freezing
or melting process may be analyzed as involving
transient conduction in the solid phase and
quasi-steady convection in the fluid as viewed
by an observer moving with the phase interface.
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The solution obtained for the conduction
process involves a parameter which must be
specified by analysis of the convection process
or by experiment. Using the conduction solution
however the shape of the suction velocity
distribution along the phase interface could be
determined. Based on this result, a von Karman
integral analysis of the convection process is
performed. Combining the results of the con-
vection and conduction solutions, quantitative
predictions of heat transfer and solidification
rates are obtained.

MATHEMATICAL FORMULATION

Consider a flat, vertical plate of length L
immersed in an infinite fluid initially at a
uniform temperature, T,.. For time greater than
zero let the temperature of the plate have the
uniform and constant value T, which is assumed
to be less than the solidification temperature
T, of the surrounding fluid. Due to the inertia
of the fluid and the finite propagation velocity
of disturbances associated with convective pro-
cesses [9, 10], a one dimensional conduction
solution may be expected to apply over most of
the plate for sufficiently small times. Eventually
however, as a result of the spatial dependence
of the convective heat flux at the phase interface,
a two dimensional solid deposit forms on the
surface of the plate as shown schematically in
Fig. 1.

Neglecting viscous dissipation and compres-
sion work, assuming that all properties (with
the exception of the fluid density) are uniform
and constant in each phase, that the solid
adheres to the plate, and that a smooth phase
phase boundary is formed, the following con-
servation equations describe transient, two
dimensional melting or freezing with natural
convection in the fluid phase.

a_T5
ot

O<x<L
= o, V2T, x
O0y<s

1)

Ve

g

i\ %
I s\ |
Solid - fluid

_—" interface

—_

FG. 1. Schematic representation of the solidification
process and coordinate definitions.
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Here W is the fluid velocity vector, f is the body
force vector per unit mass and the subscript s
denotes properties of the solid phase. It has been
assumed that the fluid is Newtonian and there
are no sources or sinks in either phase. These
equations together with an equation of state
for the fluid and appropriate boundary and
initial conditions completely describe the
phenomenon.

The unique feature of Stefan-like problems is
associated with the requirements of conservation
of mass and energy at the moving phase inter-
face. These boundary conditions may be derived
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from the control volume forms of the continuity
and energy equations.

%”jpd(vol)+”pW.ndA=0 (5)

=P (e W7 )d(vol)

+ HP( +—+f,’)w.ndA
= §ff of Wd(vol) + [[7.Wda

+ [[kVT.nd4.  (6)

Here 7 is the shear stress vector acting on the
control surface and n is a unit outward normal.
When applied to the control volume shown as the
shaded region in Fig. 1 and taking the limit as
a and b approach s, the following boundary
conditions are obtained at y = s.

(0 p)2 = —ﬂ)
PP =P \P T U5

0s oT 0T, 0s

ps(hos - ho)a =k— ay ksg ax

k(zz—kaT + ( —va—>
X Ox ¥ 0x py ¥ 0x

ou Ov

The stagnation enthalpy difference (hy — hy) is
the latent heat of fusion, .Z.

In order to specify both fluid velocity com-
ponents at the phase interface, an additional
boundary condition is required. This may be
obtained by noting that the velocity of the fluid
tangent to the phase interface must be zero, ie.

Os
u+v—=20 at y=s
ox

™

©)

Note that if p = p, and ds/0x = 0, equations (7),

(8) and (9) reduce to the form
u=v=0 (10)

aty =s.

ds oT, oT

d_ 0%, aT 11
e =k kG (1)

Equation (11) is the classical “Stefan boundary
condition.”

DIMENSIONAL ANALYSIS

Having thus arrived at a general mathematical
description of two dimensional melting or freez-
ing phenomena, the next step is to determine
whether any terms in the general equations (1-4),
(7-9) are unimportant for the special case under
consideration. This may be done by putting the
equations into a dimensionless form such that
for the situation of interest the values of all di-
mensionless derivatives are the same order of
magnitude. The success of such an analysis
depends very strongly on the degree to which
specific phenomena are understood. For the
present problem, the greatest difficulty was in
the choice of the appropriate dimensionless
time parameter.

It is known [9-11] that natural convection
transients are generally of short duration rela-
tive to times of interest in melting or freezing
processes. Therefore, the characteristic time
for the overall process was chosen by considering
transport processes in the solid and at the phase
interface. For constant temperatures at all
boundaries, ds/0t must approach zero as time
becomes large. Therefore the conductive heat
efflux from the phase interface must approach
the convective heating rate. Equating these
quantities and considering situations in which
0Os/0x is small, the following relation is obtained

h(x, o)(T; — T,)
+ ks(Tf - YI,)/S(X, OO) =

Here h(x, c0) is the local, steady state, convective
film coefficient. Therefore, in contrast to classical
conduction solutions [1], the presence of an
infinite fluid medium in which convection may
occur implies the existence of a maximum,
finite, limiting thickness of the solid layer given
by

(12)

kdTy — Tp)
WL, 0) (T, — T))

s(L, o0) = (13)
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This quantity is a natural characteristic U + v _ 0 (17a)
length determined by material properties, initial ¢ = du
and boundary conditions. Using this result, it is oU sU a2U
shown in [3] that when the ratio ¢(T, — T,)/¥ U—+ V- =0+ PrF (17b)
is less than unity, the appropriate dimensionless 4 Oy ue o U5 >0
time parameter is oP/op =0 (170)
T = at/s(L, 00)?. 20 0 0%
/S(. . . U+ V=25 (17d)
Thus, the following dimensionless quantities o¢ ou Op ]
may be introduced.
&= x/L T = agt/s(L, ©)? ]
s = y/s(L, o0) u = (Pr*Gr)ty/L
o = s/s(L, ) P =pjp.,
0, =(T, - T)(T; — T) 0=(T, - TIT, — Ty){ (14)
H = h(x, t)/h(L, ) U = (Pr’Gr)~tuL/u
V = (Pr*Gr)~*vL/a
Pr=v/a Gr = gf(T,, — THL
%) L gyt Ji_pl% (18)
o [s(L, o) py ot
P M=o
L7 do a0
———+—+H =0 19
cs(’r/' - T;;) ot M * a#s ( )
Uu=0 (20)

Now considering those cases in which
2
S(L, o0) <
L

and omitting terms multiplied by coefficients of
order &, equations (1-4) and (7-9) reduce to the
following.
29, _ 2%0,
ot ol

<1

(15)
as
a

Ospuy <o (16)

Equations (17) are the classical [12] boundary
layer equations for steady state natural con-
vection. Here, however, their solution is compli-
cated by their coupling with the conduction
equations through (18) and (19), and by the
fact that the boundary of the fluid region is
described by an unknown function, o(¢, 7).

VARIABLE TRANSFORMATION

The latter difficulty can be eliminated by
introducing coordinates fixed relative to the
phase interface and by writing the governing
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equations for the velocity and temperature
fields relative to this moving system. That is,
referring to Fig 1, let

tp=1t; W=ui+vj; Xz=x;
a
Ye=y—s; WR=W——a—tsj=uRa+an. Q1)

The subscript R refers to quantities relative to
the phase interface. Introducing (21) into the
governing equations (17, 18) for the con-
vection process, the following equations are
obtained.

N

TR, (222)
Uy Uy
U ot ¥ Y B
U
=0+ Pr?ﬁg Fug >0 (22b)
R
or _ (22¢)
Oug
29 06 %6
UREZ; + VR% =52 (22d)
_ % L 2604 ]
Ve = x AL (Pr3Gr)
s 0o
%ér—; ug =0 (23)
R

Here the subscript R implies that up, vg, Xy and
Yz have been substituted for u, v, x and y in
equation (14). In this new coordinate system,
the boundary of the fluid region corresponds to
ug = 0. The term quasi-steady is used to describe
the associated convective phenomena since
time appears as a parameter in equation (23).

APPROXIMATE SOLUTION

Equations (16), (19, 20) and (22, 23) represent a
mathematical model which includes natural
convection in the fluid phase and describes the
formation of a solid on a vertical surface. An
approximate solution for (16) and (19) has
appeared [7] based on the assumption that the

local convective heat flux at the phase interface
and the interface velocity are related by
Os

g(x, t) = g(x, ©) + n—

P (24)

Here n is a coefficient to be evaluated from know-
ledge of the convective process in the fluid phase.
The solution obtained in [7] may be written as

(1 — o& Hexp(l™#)

=exp(— {7 fw)})  (25)
where
_ 15+ 10w + 2w? }
Jw) = 5wl + w)
L)

~ 20 + n/p, L)

Equation (25) is plotted in Fig. 2 where
Neumann’s pure conduction solution [1] is also
shown. Comparison of these results implies
that convective effects are unimportant for

c&™t <03 (27)

(I, — T) '
J

Using dimensionless variables, the solid thick-
ness (o) corresponding to equation (25) is shown
as a function of position (£) along the plate with
time [t/ f(w)] as a parameter in Fig. 3. Based on
this solution, the phase interface velocity may be
determined in terms of the parameter 7 (or the
dimensionless parameter w). That is, using
equation (25) in (23)

AT, — T;) Nu
c{T; — T,) (PrGr)

. {1 - 5—*} /f(w). (28)
g

where Nu = A(L, oo)L/k. V, is shown as a func-
tion of & with t/f(w) as a parameter in Fig. 4.
This figure shows that at any instant of time, the
interface velocity distribution may be approxi-
mated by

Vo = Valur=0 =

Vo~ —S&m (29)
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Neumann solution [i],[7]

Variotional solution including the effect
of convection at the phase interface

06
- £ Ve 7
(=o€ 1™ " 2™ /1w
o4 Fiw)= {15+10w+2w2} / { Sw(3+m)}
e\ —-h) E__x_. = as/
x(|+P,Ll) ! L7 sl o
02
l l ! | [ [ i |
o] Q-2 0-4 0-6 o8 -0 12 i-4 -6
€72/ Flw)

FG. 2. Comparison of the variational solution including
the effect of convection with Neumann’s pure conduction
solution.

! I | J |

| L |
o] 0-2 03 0-4 05 06 07 0-8
E=x/L

FiG. 3. Dimensionless solid thickness vs. distance from the
leading edge of the plate with time as a parameter.
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-7 ) Nu -~
I = _{ (il } v
o= C AT T} rwNPPG "

N ggl
08 - . ol !
— Variational solution (/= 5~3§ %)

—— Approximation (P=53¢m)
o6
m =0-4l

04

o}

Fig. 4 Comparison of the variational solution for the
interface velocity distribution with a simpler approximating
function.

where § and 0 < m < 1 are functions of t/f(w).
This approximation (29) can now be used to
simplify the boundary condition (23) required
for solution of the equations (22) describing
the quasi-steady convective process. That solu-
tion will then be used to determine the validity
of the assumed relation (24) leading to the
conduction solution and will furthermore per-
mit evaluation of the parameter 7.

INTEGRAL ANALYSIS OF THE QUASI-STEADY
CONVECTION PROCESS

The quasi-steady convection process may be
analysed using von Karman’s integral technique.
The velocity distribution along the boundary
of the fluid region relative to the moving phase
interface is approximately described by equa-
tion (29). Integrating the boundary layer equa-
tions (22) with respect to ug and using continuity

to express Vy in terms of Uy, the von Karman
equations are obtained.

1

d
fUZd L ProUg
0

= AJGdlj/ (30a)

df é 51” q=0
d 1
106
2o el
iz j Urpdy +A6t// 'mo Vo (30b)

.0

Here 6 and A are the values of uy at the edges of
the momentum and thermal boundary layers in
the fluid and

N = lig/d, Y = ug/A (31)
Representing Uy and 8 by the polynomials
2

— _ 3
Ur=5mr + o0V, n(l =n)

0=1——yY(2 - 20>+ ¢3)

6+A%

Y6 — 8y + 3Y7).  (32)

"6+ AV, AV0
equations (30) become ordinary differential
equations for d and A as functions of £ The pro-
files chosen (32)satisfy the energy and momentum
equationsidenticallyat u, = 0.Byusingequation
(29) for V,, (32) for U, 0 and defining

Z =t (33)
equations (30) are transformed into a pair of
simultaneous differential equations that are
amenable to power series analysis. That is,
introducing the following power series repre-
sentations

s=2¢ )y 5,2 (34)
n=0
o= 73 oz (35)
n=0
where
Q=A/ (36)
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into the resulting equations, and equating
coefficients of like powers of Z, algebraic
equations are obtained for the -coefficients
0, €, The resulting algebraic equations can
then be solved explicitly. The details of this
somewhat lengthy procedure are described in
[3]. Some of the manipulations involved imply
that the solution must be limited to the range.

—%<A6]@<1.

oV,

1< Pr <1 and 37

Unfortunately, the authors have been unable
to rigorously demonstrate the convergence of
the resulting series. Up to thirty pairs of coeffi-
cients (6,, £, have been evaluated however,
and within the range described by (37) the ratio
of successive coefficients remains less than one.
Computations were terminated when the last
computed coefficients changed the value of
A at £ =1 by less than 0-1 per cent. Once the
J, and Q, have been evaluated, the local con-
vective heat transfer coefficient can be determined
from the solution for the temperature distri-
bution. This results in the following dimension-
less relation.

Nu,

Grt

2¢t /Pr

A + AV,/6) 38)

RESULTS

Computed values of Nu,/Grt are shown as
points in Fig. 5 as a function of the local magni-
tude of the relative fluid velocity (V;) at the phase
interface, Pr and m. This figure shows that the
local convective heat flux parameter, Nu,/
Gri, is primarily a function of the local magnitude
of ¥, and Pr. Dependence on the boundary
velocitydistribution parameter, m, is of secondary
importance for 0 < m < 1.

For the case of m = 0, Pr = 0-72 a first order
perturbation analysis for natural comvection
with suction or injection has been obtained by
Sparrow and Cess [8]. A comparison of their
results with the present power series analysis

PrIOOO

5 — Equotion (40)
o m=0
X m=05
/(;55/)( { 02 o m=1
Pr 100
2 tﬂ/ X/
ﬂxB’ djc})p'
£=10 £=05 £=0-2 Pr=0
. x/o/o
NS /U—X‘B;GXD’
s £:10 £:05 £=02
Prsi
T ———
*r S —
g e
£:10 £=05 §=02
Awis for curves 1 H {

0 2F~=== |gpelled £z 0-2 "'—“é o1 o2 03
- - ——L | | H !
F=Axis for {05 == 5 Gl 03 03 04
L.g= L i L | Il

&0 ol 02 03 04
_Vo

HG. 5. Comparison of the heat flux at the phase interface
with a linear approximation.

is shown in Fig. 6. Figure 7 provides a compari-
son with Ostrach’s solution [13] for the case
of V, =0.

The present solution is based on the assump-
tion that the local convective heat flux and the

Vo = const

3l Ar=0T2

—— Sparrow and Cess [8]
—=—= Present solution
& ¢=02
‘; £:05
&=1

{ | |
=0 3] 2] 0-2 03

L 1
-04 -03 =02
Fig. 6. Comparison with a first order perturbation analysis

for constant V.
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X Present solution for V,=0

4-0p-
3.2 |- == Ostrach [I3]
2.4}
x[X
¢

1-61—

T /
e X=X
o ! 1

| J

100 1000

Pr

FiG. 7. Comparison with Ostrach’s results for V, = 0.

local phase interface velocity are related by equa-
tion (24). Introducing a new parameter, f, such
that

o ﬁc(Tw - T))

psZ &£
equation (24) may be rewritten in dimensionless
form as
Nu, Nu(x, o)
Gt Grt

(39

— B/Pr &, (40)
Values of § determined from a least square error
fit of the results of the power series analysis are
shown in Fig. 8. Using the resulting values of 3,
equation (40) is represented by the solid curves
in Fig. 5. Comparison of these curves with the
data points also shown indicates that the
assumed linear relation (24) is quite reasonable
in the range of validity of the power series solu-
tion.

Using Fig. 8, B can be determined for a given
set of conditions. Equations (25, 26), (28) and
(39, 40) then represent a complete solution for
solidification onto a vertical surface with natural
convection in the fluid phase. The validity of this

solution is limited to the range indicated by
(37). Using equation (28), it can be shown that
this is equivalent to the limitation

éﬁh Cs(Tf — Tp)

P oT, — Tp) (“41)

<1+§f(w)

o6

05+ Pr

03}
~ s
g(x,1) =q(x,00)+ L7y
o2 T =7
ps £
01 -
| i / | ;
5} 02 04 0-6 0-8 10

E=x/L
Fig. 8. The conduction—convection coupling parameter
as a function of position and Prandt! number.
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In many cases this range of validity overlaps
that of the pure conduction solution (27).

NUMERICAL EXAMPLE

As a specific example to illustrate the appli-
cation of the solution obtained here consider a
flat, vertical plate at a temperature of —40°F
(for time greater than zero) immersed in a water
environment with T, = 62°F. Then letting
L=1ftT, T, =30°F, T, — T, = 72°F and
using the property values given in [14]

Pr =9385
and
Gr = gf(T,, — T)DP/v* = 192 x 10°
therefore from Fig. 7

Nu/Grt = 0-83
so that
Nu =973
and
L, (T, —
S(L,oo) _ k(T,—-T) 00955

L ~ NulKT,-T,)
1e.
S(L, o0) = 1-15in.

Next the following values are obtained for S
from Fig. 8

¢ B
01 0-38
05 041
10 045

Therefore at £ = 05

n AT, —-T)
P =8 7 = 0-085
_T; -T)®

T T+ ) T O
15 + 10w + 2w?
fw) = W = 4-97.

The thickness of the solid is determined using the
logarithm of equation (25)

&t
fw)
For example with
ot =09
7Y/ f(w) = 14,

=—¢¢tt-In{l —ot %

or
=585
and
t = s(L, 0)*t/o, = 1-12 h.
The thickness of the solid phase at this instant
in time and position along the plate is
s = 09 s(L, 00)¢* = 0-868 in.

To examine the validity, in this particular
example, of the assumptions used in the analysis
leading to this solution, the coefficients given
by equation (15) must be evaluated. In this case

2
AL ®) * _ 00092 < 1

%LV (prGrt = 00073 < 1
2 \s(L, )] = '

Finally, to determine whether the ranges of
validity of the approximate quasisteady con-
vection solution and the Neumann conduction
solution overlap, equation (41) is utilized. The
Neumann solution [1] cannot be distinguished
from the present solution for 6¢~* < 0-3. From
equation (41) the present solution may be
expected to be valid for

ot t > {1 + 3 2(w) i((ff - ;’;}_l =012
o — 4f

Thus, the ranges of validity of the two solutions
do overlap so that, in this example for all
practical purposes the present solution may be
used during the entire freezing process.
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With regard to this example it is of course
recognized that water is a peculiar substance
in that its density has a maximum at 4°C. There-
fore the profiles used in the integral analysis of
the convective process undoubtedly introduce
some error when applied to this case. It was felt,
however, that this disadvantage was offset by
the ready availability of all the property data
required to illustrate the solution. For many
materials adequate property information is
quite difficult to obtain.

Another characteristic of water is that it has a
rather high heat of fusion. Therefore in the
example considered the quantity n/p,.% was
found to be relatively small—i.e. of the order
of 10 per cent. Thus, if the convective heating
rate at the phase interface was assumed to be
identically equal to the steady state value,
q(x, o0), no more than a 10 per cent error* is
introduced in estimates of the time required to
reach a given thickness of solid.

On the other hand, if the solidification of
liquid hydrogen (a process used in the purifi-
cation of rocket fuel) is considered then accord-
ing to [14, 15]

¥ = 14 cal/g
and with T, — T, = 10°K,
¢ = 21cal/g’K
Pr = 125.

Therefore, from Fig. 8, § ~ 0-44 and

n L dTly, =T

pL p &£

Thus, in this case the time required to produce a

given thickness of solid would be considerably

underestimated if the effect of suction at the
phase interface is ignored.

= 0-66.

* This is due to the fact that = > 0 and f{w) ~ 1/w for
w< 1

SUMMARY

The growth rate and spatial distribution of a
solid deposit freezing onto a vertical surface has
been predicted based on considerations inclu-
ding the complete set of two dimensional,
transient equations and natural convection in
the fluid phase. Due to the extreme complexity
of such phenomena a simple set of boundary
conditions and a series of simplifying assump-
tions were introduced to reduce the mathe-
matical description to tractable form. It has been
shown that under certain conditions freezing or
melting phenomena may be treated as involving
a transient, one-dimensional conduction pro-
cess and a quasi-steady, two-dimensional con-
vection process coupled through the require-
ments of conservation of mass and energy at the
moving phase interface. Assuming a linear
relation between the convective heating rate
at the phase interface and the interface velocity,
it became possible to effectively decouple the
two processes. The equations describing each
process were then solved approximately using
integral techniques. The solution for the con-
vective process verified the validity of the
assumed linear relation used to decouple the
segments of the overall problem. The two
solutions when combined then provide a solu-
tion for the complete problem.

The range of validity of the results is limited by
various assumptions used in the analysis. These
limitations are defined by equations(15). Further-
more, several mathematical manipulations intro-
duce the limitations of equations (37) or (41).
Laminar, natural convection boundary layer
flow has been assumed and results have been
obtained for Prandtl numbers greater than 0-7
only.
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EFFET DE LA FLOTTABILITE SUR LA FORMATION D'UN DEPOT SOLIDE EN TRAIN
DE SE CONGELER SUR UNE SURFACE VERTICALE

Résumé—La vitesse de croissance et la distribution spatiale d’un dépdt solide qui se congele sur une
surface verticale sont prédites analytiquement dans le cas ou il y a transport de chaleur & Vinterface mobile
entre des phases dd 4 la convection naturelle dans le fluide. On montre que sous certaines conditions le
probléme peut &tre traité comme impliquant un processus de conduction transitoire et unidemensionnel et
un processus de convection quasi-permanent et bidimensionnel qui sont couplés & travers les conditions
de conservation de la masse et de I'énergie a I'interface entre les phases. Une solution approchée est obtenue
en employant des techniques intégrales et les résultats sont en accord avec les cas limites pour lesquels
on connait des solutions exactes.

DER EINFLUSS DES AUFTRIEBS AUF DIE BILDUNG EINER GEFRIERENDEN
FESTABLAGERUNG AN EINE SENKRECHTE OBERFLACHE

Zusammenfassung— Die Wachstumsrate und die rdumliche Verteilung einer festen Schicht, die an einer
senkrechten Wand anfriert, wird analytisch bestimmt fiir den Fall, dass an der wandernden Phasengrenze
der Wirmeiibergang durch die natiirliche Konvektion der Fliissigkeit bestimmt wird. Es wird gezeigt,
dass unter gewissen Bedingungen dieses Problem behandelt werden kann wie ein instationdrer eindi-
mensionaler Wirmeleitungsvorgang und eine quasistationire zweidimensionale Konvektionsstromung,
welche durch die Bedingung der Masse- und Energieerhaltung an der Phasengranze gekoppelt sind.

Mit Hilfe von Integralverfahren wird eine Niherungslosung angegeben, die Ergebnisse stimmen mit

den exakten Losungen, die fiir Grenzfille bekannt sind, iiberein.

BJIUAHUE IIJIOBYYECT HA OBPASOBAHUE TBEPIOI'O OCAJIKA,
HAMEP3AIOIETO HA TBEPJION BEPTUKAJILHON ITOBEPXHOCTU

Annorauma—CHOPOCTE POCTA M pacHpefiesieniie B MPOCTPAHCTBE OCAJKA, BATBEPIEBAIOIIETO
BCJIEICTBAE KPUCTANIN3ALMM Ha BEPTHKANbHON TOBEDXHOCTH, PACCUNTHIBALTCH AHATNTHYSCKH
AR cAyYadA TMePeHOCA TeIJIa HA ABIKYMEHCHA BCJEACTBHE eCTeCTBEHHOM KOHBEKUHH B
AHAKOCTY rpaHune pasgena ¢as. [Tokasano, 4To Npu ONpEleIeHHBIX YCIOBUAX MOMKET OHTH
UCMOIB30BAHA MATEMATHYECKAA MONENDb, ONMCHBAIOMAA NEPEXOIHEIL OHOMEPHEI npouecc

TeNJONPOBOAHOCT U RBEI:EIIICTaHPIOHapHHﬂ uBymepHth NpoIece KOHBERIUY,

KOTOpHE

06beMRAIOTCA B cnay TpeGoBanuit COXpaHEHNA MACCH M BHEPIMM Ha rpaHuue pasgeina das.
Mytem wunrerpanbubix npeobpasoBaHuit NONYYeHO TPUOIMMEHHOE peuleHHe. PeayiabTaThi
COTJIACYIOTCA C NPEACTbHEMH CIY4RAMH, A KOTOPHX M3BECTHL] TOYHLE DelIeHns.



