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Ahstrac-The growth rate and spatial distribution of a solid deposit freezing onto a vertical surface is 
analytically predicted for the case in which them is heat transfer at the moving phase interface due to 
natural convection in the fluid. It is shown that under certain conditions the problem may be treated as 
involving a transient, one-dimensional conduction process and a quasi-steady two-dimensional convection 
process which are coupled through the requirements of conservation of mass and energy at the phase 
interface. An approximate solution is obtained using integral techniques and results are in agreement with 

those limiting cases for which exact solutions are known. 

NOMENCLATURE 

specific heat ; 
internal energy per unit mass ; 
gravitational acceleration ; 
Grashof number, g/?( T, - T,)L?/v’ ; 
convective film coefficient ; 
enthalpy per unit mass ; 
dimensionless convective film co- 
efficient, h(x, t)/h(L, co) ; 
thermal conductivity ; 
plate length ; 
latent heat of fusion per unit mass; 
interface velocity distribution para- 
meter ; 
Nusselt number, h(L, oo)L/k ; 
static pressure; 
dimensionless pressure, p/p, ; 

Prandtl number, v/a ; 
convective heat flux at the phase 
interface ; 
solid phase thickness ; 
interface velocity amplitude para- 
meter defined by equation (29) ; 

4 

T 
% 0, 

U, V, 

W, 

x, Y, 

time ; 
temperature ; 

2, 

fluid velocity components in the x- 
and y-directions respectiyely ; 
dimensionless u, v as defined by 
equations (14) ; 
dimensionless parameter defined by 
equation (26); 
Cartesian coordinates along the 
plate surface and normal to it 
respectively ; 
dimensionless distance along the 
plate, (x/L)“+*; 

Greek symbols 

2 

thermal diffusivity ; 
dimensionless conduction-convec- 
tion process coupling parameter, 

~/PAT, - 7”); 
6, A, dimensionless boundary layer thick- 

nesses for the velocity and thermal 
fields respectiyely defined after equa- 
tion (30b); 

l Bell Telephone Laboratories, Whippany, New Jersey 
% dimensionless y-coordinate defined 

079431, U.S.A. by equation (31) ; 
7 New York University, University Heights, Bronx, New @ dimensionless temperature, 

York, U.S.A. CT, - V/V, - T/1; 
13 



dimensionless y-coordinate defined 
by equation (14) ; 
kinematic viscosity ; 
dimensionless x-coordinate, x/L ; 

dimensionless conduction-convec- 
tion process coupling parameter de- 
fined by equation (24) ; 
density ; 
dimensionless solid phase thickness, 

s(x, Q/s@+ 00) ; 
dimensionless time, gt/s(L, co)” ; 

dimensionless y-coordinate defined 
by equation (31); 
ratio of the thermal to velocity 
boundary layer thickness, A/6. 

Vector quantities 

V, Del operator ; 

f, body force per unit mass ; 
i, j, u, n, unit vectors defined by Fig. 1; 

;;I, 
shear stress vector ; 
fluid velocity vector. 

Subscripts 
property values without a subscript 
refer to the fluid phase ; 
( ) evaluated at the phase interface ; 
coefficient of z” in series representa- 
tionof(); 
( ) relative to the moving interface 
evaluated at the interface ; 
( ) evaluated at the plate surface ; 
( ) relative to the moving interface ; 
property values of the solid phase ; 
local, instantaneous value of ( ) based 
on x as the reference length in 
dimensionless quantities; 
( ) evaluated at a large distance from 
the plate. 

INTRODUCTION 

In comparison with times of interest in 
melting and freezing processes, natural con- 
vective transients are often of negligible dura- 
tion. From the point of view of an observer 
moving with the phase interface however the 
fluid would appear to be moving into the solid 
surface at a time varying rate. It is well known 
[8] that large changes in the rate of convective 
heat transfer to a surface can be produced by 
small rates of suction at that surface. Motivated 
by these considerations, a dimensional analysis 
of the complete set of governing equations was 
undertaken. The results show that the freezing 
or melting process may be analyzed as involving 
transient conduction in the solid phase and 
quasi-steady convection in the fluid as viewed 
bv an observer moving with the phase interface. 

THE EFFECTS of fluid motion in melting and 
freezing processes are of interest in a variety of 
applications ranging from metal processing to 
cryogenics and aerospace technology. Problems 
associated with such processes which involve _ 
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simultaneous heat transfer and phase change 
and where both the temperature distribution 
and the motion of the phase interface must be 
determined are commonly referred to as “Stefan- 
like” problems. In general, the system of 
equations describing such phenomena is non- 
linear. With the exception of a few cases [l] 
involving simple boundary and initial condi- 
tions. no exact solutions have been s obtained. 
For more complex situations, a variety of 
numerical, analog, and approximate solutions 
have appeared. A detailed review of the litera- 
ture has been published by Muehlbauer and 
Sunderland [2]. 

Analyses considering the effects of convection 
on the freezing process have appeared only 
within the last few years. A brief review of these 
efforts is presented in [3]. Included are several 
approximate solutions [4-71 for determining 
the effect of convection near the moving phase 
interface. These all assume that the convective 
heat flux is known in advance. However. no 
general method for determining this flux was 
available. One objective of the present in- 
vestigation, therefore, was to obtain an analytic 
estimate for the rate of convective heating due 
to natural convection at the phase interface 
in the case of a solid being deposited on a 
vertical, isothermal surface. 
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The solution obtained for the conduction 
process involves a parameter which must be 
specified by analysis of the convection process 
or by experiment. Using the conduction solution 
however the shape of the suction velocity 
distribution along the phase interface could be 
determined. Based on this result, a von Karman 
integral analysis of the convection process is 
performed Combining the results of the con- 
vection and conduction solutions, quantitative 
predictions of heat transfer and solidification 
rates are obtained. 

MATHEMATICAL. FORMULATION 

Consider a flat, vertical plate of length L 
immersed in an infinite fluid initially at a 
uniform temperature, Tm For time greater than 
zero let the temperature of the plate have the 
uniform and constant value Tp which is assumed 
to be less than the solidification temperature 
Tf of the surrounding fluid. Due to the inertia 
of the fluid and the finite propagation velocity 
of disturbances associated with convective pro- 
cesses [9, lo], a one dimensional conduction 
solution may be expected to apply over most of 
the plate for sufficiently small times. Eventually 
however, as a result of the spatial dependence 
of the convective heat flux at the phase interface, 
a two dimensional solid deposit forms on the 
surface of the plate as shown schematically in 
Fig. 1. 

Neglecting viscous dissipation and compres- 
sion work, assuming that all properties (with 
the exception of the fluid density) are uniform 
and constant in each phase, that the solid 
adheres to the plate, and that a smooth phase 
phase boundary is formed the following con- 
servation equations describe transient, two 
dimensional melting or freezing with natural 
convection in the fluid phase. 

(1) 

~ 
L x 

1 
dX L -I- 

i 

i 

Solid-fluid 
/ interface 

RG. 1. Schematic representation of the solidification 
process and coordinate definitions. 

v.w=o 1 (2) 

DW 
-=f-++Vv2W 
Dt 

t 

y > s. (3) 

DT 
- = rxV2T 
Dt 

(4) 

Here W is the fluid velocity vector, f is the body 
force vector per unit mass and the subscript s 
denotes properties of the solid phase. It has been 
assumed that the fluid is Newtonian and there 
are no sources or sinks in either phase. These 
equations together with an equation of state 
for the fluid and appropriate boundary and 
initial conditions completely describe the 
phenomenon. 

The unique feature of Stefan-like problems is 
associated with the requirements of conservation 
of mass and energy at the moving phase inter- 
face. These boundary conditions may be derived 
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from the control volume forms of the continuity 
and energy equations. 

;JJJPd(vol) + JJpW.ndA = 0 (5) 

=jjjpf.Wd(vol)+Ijr.WdA 

+ &r4T.ndA. (6) 

Here r is the shear stress vector acting on the 
control surface and n is a unit outward normal. 
When applied to the control volume shown as the 
shaded region in Fig 1 and taking the limit as 
a and b approach s, the following boundary 
conditions are obtained at y = s. 

(f-9 

The stagnation enthalpy difference (h, - h,) is 
the latent heat of fusion, 2’. 

In order to specify both fluid velocity com- 
ponents at the phase interface, an additional 
boundary condition is required. This may be 
obtained by noting that the velocity of the fluid 
tangent to the phase interface must be zero, i.e. 

u+v~=O at ax y = s. (9) 

Note that if p = ps and as/&x = 0, equations (7), 
(8) and (9) reduce to the form 

u=v=o 

I 

(10) 

at y = s. 

(11) 

Equation (11) is the classical “Stefan boundary 
condition. ” 

DIMENSIONAL ANALYSIS 

Having thus arrived at a general mathematical 
description of two dimensional melting or freez- 
ing phenomena, the next step is to determine 
whether any terms in the general equations (l-4) 
(7-9) are unimportant for the special case under 
consideration. This may be done by putting the 
equations into a dimensionless form such that 
for the situation of interest the values of all di- 
mensionless derivatives are the same order of 
magnitude. The success of such an analysis 
depends very strongly on the degree to which 
specific phenomena are understood. For the 
present problem, the greatest difficulty was in 
the choice of the appropriate dimensionless 
time parameter. 

It is known [9-111 that natural convection 
transients are generally of short duration rela- 
tive to times of interest in melting or freezing 
processes. Therefore, the characteristic time 
for the overall process was chosen by considering 
transport processes in the solid and at the phase 
interface. For constant temperatures at all 
boundaries, as/& must approach zero as time 
becomes large. Therefore the conductive heat 
efflux from the phase interface must approach 
the convective heating rate. Equating these 
quantities and considering situations in which 
as/ax is small, the following relation is obtained 

+ k,( Tf - Y,)/s(x, co) = 0. (12) 

Here h(x, co) is the local, steady state, convective 
film coefficient. Therefore, in contrast to classical 
conduction solutions [l], the presence of an 
infinite fluid medium in which convection may 
occur implies the existence of a maximum, 
finite, limiting thickness of the solid layer given 

by 
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This quantity is a natural characteristic 
length determined by material properties, initial 

aU+aV=, 
a[ 8~ 

and boundary conditions. Using this result, it is 
shown in [3] that when the ratio c,(T/ - T,‘)/Z u %! + v E = 0 + pr !?_! 
is less than unity, the appropriate dimensionless at 8P ap2 

time parameter is aplap = 0 
z = a,t/s(L, 00)‘. 

Thus, the following dimensionless quantities 
~!!+~E=!?! 

at ap ap2 
may be introduced. 

(174 

l & > 0. (17b) 
(17c) 

(174 

r = x/L 

PL, = Yls(L, a)) 
0 = s/s(L, co) 

0, = (T, - q)/(q - T,) 

fl = &, t)/h(L, co) 

Pr = v/a 

z = aJ/s(L, ~0)’ 
, 

/A = (Pr’Gr)*y/L 

p = PIP, 

0 = V, - V(Tm3 - q) ’ (14) 

U = (Pr2Gr)-*uL/a 
V = (Pr’Gr)-*vL/a 
Gr = gjl(T, - T&?/v3 

}(Pr2Gr)-+ (I- :} g 

u=o 

(18) 

ps = CT. 

(19) 

(20) 

Now considering those cases in which Equations (17) are the classical [12] boundary 

s(LSco) 2<a<1 
layer equations for steady state natural con- 

L 
vection. Here, however, their solution is compli- 

(15) cated by their coupling with the conduction 
equations through (18) and (19), and by the 
fact that the boundary of the fluid region is 

and omitting terms multiplied by coefficients of 
described by an unknown function, a(<, r). 

order a, equations (l-4) and (7-9) reduce to the 
followinn. 

VAlUABm TRANSFORMATION 

ae, _ 8% 
The latter difficulty can be eliminated by 

-z 
ar ak 

OGccS<O (16) 
introducing coordinates fmed relative to the 
phase interface and by writing the governing 
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equations for the velocity and temperature 
fields relative to this moving system. That is, 
referring to Fig. 1, let 

t,=t; W=ui+vj; X,=x; 

YR = y - s; W, = W - gj = u,a + uRn. (21) 

The subscript R refers to quantities relative to 
the phase interface. Introducing (21) into the 
governing equations (17, 18) for the con- 
vection process, the following equations are 
obtained. 

_+av,=O auR 

al, apR 

au, auR 
UR a& + ' apR 

aw, =e+z+----- 
a34 

ap -= 
apR 

0 

PR ’ 0 

v,= -5 
L 

___ (Pr’Gr)-* 
a 4% 03) 

ps an . -- 
P azR' 

PR = o 

(224 

VW 

VW 

P2d) 

(23) 

Here the subscript R implies that uR, vR, XR and 
Y, have been substituted for u, u, x and y in 
equation (14). In this new coordinate system, 
the boundary of the fluid region corresponds to 
,uR = 0. The term quasi-steady is used to describe 
the associated convective phenomena since 
time appears as a parameter in equation (23). 

APPROXIMATE SOLUTION 

Equations (16), (19,20) and (22,23) represent a 
mathematical model which includes natural 
convection in the fluid phase and describes the 
formation of a solid on a vertical surface. An 
approximate solution for (16) and (19) has 
appeared [7] based on the assumption that the 

local convective heat flux at the phase interface 
and the interface velocity are related by 

as 4(x, 0 = 4(x, 00) + 7c jy. (24) 

Here rc is a coefficient to be evaluated from know- 
ledge of the convective process in the fluid phase. 
The solution obtained in [7] may be written as 

(1 - at-*)exp(o{-+) 

= exp (- {~5-+/_W)}) 

where 

15 -1 low + 2w2 
f(w) = ___ 

5w(3 + w) 

cs(T/ - Tp) w = Lz(l + 7c/p,?z) 

Equation (25) is plotted in Fig. 2 where 

(25) 

(26) 

Neumann’s pure conduction solution [l] is also 
shown. Comparison of these results implies 
that convective effects are unimportant for 

cr<-f < 0.3. (27) 

Using dimensionless variables, the solid thick- 
ness (0) corresponding to equation (25) is shown 
as a function of position (0 along the plate with 
time [r/f(w)] as a parameter in Fig. 3. Based on 
this solution, the phase interface velocity may be 
determined in terms of the parameter rr (or the 
dimensionless parameter w). That is, using 
equation (25) in (23) 

v. z v,/_ = - dTm - TfL-.-c?L 
cd T, - T,> (Pr2Gr)* 

where Nu = h(L, oo)L/k. V, is shown as a func- 
tion of < with, z/f(w) as a parameter in Fig. 4. 
This figure shows that at any instant of time, the 
interface velocity distribution may be approxi- 
mated by 

v, w -sym (29) 
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Neumann solution [I],[71 

/Iw)= (l5tIoW+2W~} / (5w(3+w)} 

W’ 
c*(r; -r,, 

X(I-cR) 
Ax 

; (=yJ.$ 

I I I I t I I 
0 0.2 0.4 0.6 0.6 

I 
I.0 I.2 1.4 I.6 

TE -“2/ fbv) 

EfG. 2 Comparison of the variational solution including 
the effect of convection with Neumann’s pure conduction 

solution. 

I.O- 

0.8 - 

I I I I I I I 0 
0.1 O-2 0.3 

1 
0.4 0.5 0.6 0.7 0.8 

E= X/f 

RG. 3. Dimensionless solid thickness vs. distance from the 
leading edge of the plate with time as a parameter. 
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(L pa H - Variotionol solution ( G:b-3& Cl 

--Approximation (p=s3&“) 

0 0.2 0.4 0.6 08 I.0 

cf = x/L 

Flc. 4. Comparison of the variational solution for the 
interface velocity distribution with a simpler approximating 

function. 

where S and 0 < m < 1 are functions of r/f(w). 
This approximation (29) can now be used to 
simplify the boundary condition (23) required 
for solution of the equations (22) describing 
the quasi-steady convective process. That solu- 
tion will then be used to determine the validity 
of the assumed relation (24) leading to the 
conduction solution and will furthermore per- 
mit evaluation of the parameter n. 

INTEGRAL ANALYSIS OF THE QUASI-STEADY 
CONVECTION PROCESS 

The quasi-steady convection process may be 
analysed using von Karman’s integral technique. 
The velocity distribution along the boundary 
of the fluid region relative to the moving phase 
interface is approximately described by equa- 
tion (29). Integrating the boundary layer equa- 
tions (22) with respect to pR and using continuity 

to express V, in terms of 
equations are obtained. 

U,, the von Karman 

1 

I s = A 0 d$ (30a) 
q=o 

0 

= v,. (30b) 

Here 6 and A are the values of pLR at the edges of 
the momentum and thermal boundary layers in 
the fluid and 

V = PLR/k II/ = PRIA. (31) 

Representing UR and 8 by the polynomials 

u, = 
6Pr “,2 sv$ 

e=1- &+(2-2V+ 
0 

- 
6 $/ V(6 - W 

0 

- cd3 

*3) 

+ 3*2), (32) 

equations (30) become ordinary differential 
equations for 6 and A as functions of 5. The pro- 
fileschosen(32)satisfy theenergyandmomentum 
equationsidenticallyatpR = O.Byusingequation 
(29) for V,, (32) for U,, 0 and defining 

2 E cm++ (33) 

equations (30) are transformed into a pair of 
simultaneous differential equations that are 
amenable to power series analysis. That is, 
introducing the following power series repre- 
sentations 

(34) 

where 

R= 2 t2$?, (35) 
n=O 

R = A/6 (36) 



into the resulting equations, and equating 
coefficients of like powers of Z, algebraic 
equations are obtained for the coefficients 
6, Q,, The resulting algebraic equations can 
then be solved explicitly. The details of this 
somewhat lengthy procedure are described in 
[3]. Some of the manipulations involved imply 
that the solution must be limited to the range. 

-l<s<l and Av, 
6Pr 

-+<4<l. (37) 
E=G0 E=O5 (=02 

Unfortunately, the authors have been unable I PI=, 

to rigorously demonstrate the convergence of 
the resulting series. Up to thirty pairs of coefi- o’5 /&&jgi 
cients (6, QJ have been evaluated however, t E=10 (=05 E=OP 

and within the range described by (37) the ratio 
of successive coefficients remains less than one. 
Computations were terminated when the last o 2 

t 
AXIS for CWWS --- lobelled~=@Z ---- I I 

0 01 0.2 0.3 

computed coefficients changed the value of 
A at < = 1 by less than 0.1 per cent. Once the t 

-Axlrfor~=05--~ I I I 
01 02 03 04 

6, and Q, have been evaluated, the local con- L-c=iO-b oi 0’2 0’3 ob 

vective heat transfer coefficient can be determined 
-6 

from the solution for the temperature distri- FIG. 5. Comparison of the heat flux at the phase interface 

bution. This results in the following dimension- 
with a linear approximation. 

less relation 

Nu,_ I!<+ JPr is shown in Fig. 6. Figure 7 provides a compari- 

Gr$ - A(1 + AV0/6)’ 
(38) son with Ostrach’s solution [13] for the case 

of v, = 0. 

RESULTS 

Computed values of NuJGri are shown as 
points in Fig. 5 as a function of the local magni- 
tude of the relative fluid velocity (V,) at the phase 
interface, Pr and m. This figure shows that the 
local convective heat flux parameter, NuJ 
G& is primarily a function of the local magnitude 
of V, and Pr. Dependence on the boundary 
velocitydistributionparameter,m,isofsecondary 
importance for 0 < m c 1. 

- Sparrow and Cess [81 

For the case of m = 0, Pr = 0.72 a first order 
perturbation analysis for natural convection I I I I I I I I 

with suction or injection has been obtained by 
-04 -03 -c+2 -0, 

Sparrow and Cess [8]. A comparison of their 
-p Lo 

0.t O-2 0.3 

results with the present power series analysis 
FIG. 6. Comparison with a first order perturbation analysis 

for constant V,. 

- Equotwn MO1 

0 m=O 
” - _nx 
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The present solution is based on the assump- 
tion that the local convective heat flux and the 
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- Ostrach [I31 

x Present solution far V,=O 
x 

4.0- 

2.4 - 

Q f* 
B 

I.6 - 

0.6 - 

O- I I I I 
IO IO.0 100 KmJ 

Pr 

FtG. 7. Comparison with Ostrach’s results for V, = 0. 

local phase interface velocity are related by equa- 
tion (24). Introducing a new parameter, 8, such 
that 

equation (24) may be rewritten in dimensionless 
form as 

Values of fi determined from a least square error 
lit of the results of the power series analysis are 
shown in Fig. 8. Using the resulting values of p, 
equation (40) is represented by the solid curves 
in Fig. 5. Comparison of these curves with the 
data points also shown indicates that the 
assumed linear relation (24) is quite reasonable 
in the range of validity of the power series solu- 
tion. 

Using Fig. 8, fi can be determined for a given 
set of conditions. Equations (25, 26), (28) and 
(39, 40) then represent a complete solution for 
solidification onto a vertical surface with natural 
convection in the fluid phase. The validity of this 

solution is limited to the range indicated by 
(37). Using equation (28), it can be shown that 
this is equivalent to the limitation 

P 
0 < 1 +&w) CD’_‘_ - TJ 

c(T, - 7”)’ 
(41) 

I / I 
0 0.2 0.4 0.6 0.8 I.0 

<=x/L 

FIG. 8. The conduction-convection coupling parameter ly 
as a function of position and Prandtl number. 
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In many cases this range of validity overlaps The thickness of the solid is determined using the 
that of the pure conduction solution (27) logarithm of equation (25) 

NUMERICAL EXAMPLE 

As a specific example to illustrate the appli- 
cation of the solution obtained here consider a 
flat, vertical plate at a temperature of -40°F 
(for time greater than zero) immersed in a water 
environment with T, = 62°F. Then letting 
L=lft,T,--7”=30”F,T’-T,=72”Fand 
using the property values given in [14] 

Pr = 9.85 

z<-+ 
- = -(J,-+ - h-J (1 - up) 
f(w) 

For example with 

at-f = o-9 

or 

and 

z<-3/f (w) = 1.4, 

r = 5.85 

and 

Gr = gj?(T, - T,)c/vz = 1.92 x 10’ 

therefore from Fig 7 

Nu/Gr+ = 0.83 

so that 

Nu = 97.3 

and 

t = s(L,co)2z/a, = 1.12h. 

The thickness of the solid phase at this instant 
in time and position along the plate is 

s = O-9 s(L, co)<* = 0.868 in. 

To examine the validity, in this particular 
example, of the assumptions used in the analysis 
leading to this solution, the coefficients given 
by equation (15) must be evaluated. In this case 

s(L co) UT, - Tp) 
~ = NuLk(T, _ T/) = o*0955 L 

i.e. 

s(L, co) = 1*15in. 

Next the following values are obtained for /I 
from Fig 8 

6 B 
0.1 0.38 
0.5 0.41 
1.0 0.45 

Therefore at < = 0.5 

c,(Tf - T,)/g = 0 216 
w = 1 + (n/&z) * 

f(w) = 
15+10w+2wz=497 

543 + w) * ’ 

s(L, 00) 2 
___ =0.009241 
L 

(Pr'Gr)-f = OQO73 * 1. 

Finally, to determine whether the ranges of 
validity of the approximate quasisteady con- 
vection solution and the Neumann conduction 
solution overlap, equation (41) is utilized. The 
Neumann solution [l] cannot be distinguished 
from the present solution for at-* < 0.3. From 
equation (41) the present solution may be 
expected to be valid for 

> 1 + 3f (4 CAT/ - Tp) -I a<-+ 
2 0, - 7”) 

= o.12 
’ 

Thus, the ranges of validity of the two solutions 
do overlap so that, in this example for all 
practical purposes the present solution may be 
used during the entire freezing process. 
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With regard to this example it is of course 
recognized that water is a peculiar substance 
in that its density has a maximum at 4°C. There- 
fore the profiles used in the integral analysis of 
the convective process undoubtedly introduce 
some error when applied to this case. It was felt, 
however, that this disadvantage was offset by 
the ready availability of all the property data 
required to illustrate the solution. For many 
materials adequate property information is 
quite difhcult to obtain. 

Another characteristic of water is that it has a 
rather high heat of fusion. Therefore in the 
example considered the quantity ~/p,9’ was 
found to be relatively small-i.e. of the order 
of 10 per cent. Thus, if the convective heating 
rate at the phase interface was assumed to be 
identically equal to the steady state value, 
4(x, m), no more than a 10 per cent error* is 
introduced in estimates of the time required to 
reach a given thickness of solid. 

On the other hand, if the solidification of 
liquid hydrogen (a process used in the purili- 
cation of rocket fuel) is considered then accord- 
ing to [14, 151 

9 = 14 Cal/g 

and with T, - 7” = lO”K, 

c = 2.1 cal/g’K 

Pr = 1.25. 

Therefore, from Fig. 8, /I = 044 and 

n c(Tm - T) 
-=?J 9 

* = 0.66. 
PSP 

Thus, in this case the time required to produce a 
given thickness of solid would be considerably 
underestimated if the effect of suction at the 
phase interface is ignored. 

~____ ~.._. ~ 
* This is due to the fact that x > 0 and f(w) N l/w for 

w < 1. 

SUMMARY 

The growth rate and spatial distribution of a 
solid deposit freezing onto a vertical surface has 
been predicted based on considerations inclu- 
ding the complete set of two dimensional, 
transient equations and natural convection in 
the fluid phase. Due to the extreme complexity 
of such phenomena a simple set of boundary 
conditions and a series of simplifying assump- 
tions were introduced to reduce the mathe- 
matical description to tractable form. It has been 
shown that under certain conditions freezing or 
melting phenomena may be treated as involving 
a transient, one-dimensional conduction pro- 
cess and a quasi-steady, two-dimensional con- 
vection process coupled through the require- 
ments of conservation of mass and energy at the 
moving phase interface. Assuming a linear 
relation between the convective heating rate 
at the phase interface and the interface velocity, 
it became possible to effectively decouple the 
two processes. The equations describing each 
process were then solved approximately using 
integral techniques. The solution for the con- 
vective process verified the validity of the 
assumed linear relation used to decouple the 
segments of the overall problem. The two 
solutions when combined then provide a solu- 
tion for the complete problem. 

The range of validity of the results is limited by 
various assumptions used in the analysis. These 
limitations aredefined by equations (15). Further- 
more, several mathematical manipulations intro- 
duce the limitations of equations (37) or (411. 
Laminar, natural convection boundary layer 
flow has been assumed and results have been 
obtained for Prandtl numbers greater than 0.7 
only. 

I. 

2. 
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EFFET DE LA FLOTTABILITE SUR LA FORMATION DUN DEtiT SOLIDE EN TRAIN 
DE SE CONGELER SUR UNE SURFACE VERTICALE 

Remr&--La vitesse de croissance et la distribution spatiale dun depot solide qui se congble sur une 
surface verticale sent predites analytiquement darts le cas ou il y a transport de chaleur B l’interface mobile 
entre des phases du B la convection nature& daus le fluide. On montre que sous certaiues conditions le 
problemme peut &re trait& comme impliquant un processus de conduction transitoire et ~idem~sionnel et 
un processus de convection quasi-permanent et bidimensionnel qui sent couplts a travers lea conditions 
de conservation de la masse et de l’energie a l’interface entm les phases. Une solution approcht!e est obtenue 
en employant des techniques integrales et les resultats sont en accord avec les cas limites pour lesquels 

on connalt des solutions exactes. 

DER EINFLUSS DES AUFTRIEBS AUF DIE BILDUNG EINER GEFRIERENDEN 
FESTABLAGER~G AN EINE SENK~C~E OBE~L~CHE 

Zusammenfassung-Die Wachstumsrate und die raumliche Verteilung einer festen Schicht, die an einer 
senkrechten Wand anfriert, wird analytisch bestimmt fiir den Fall, dass an der wandernden Phasengrenze 
der WRrmeiibergang durch die natilrliche Konvektion der Fltissigkeit bestimmt wird. Es wird gezeigt, 
dass uuter gewissen Bedingungen dieses problem behandelt werden kann wie ein instationarer eindi- 
mensionaler Wiirmeleitungsvorgang und eine quasistation&. zweidimensionale Konvektionsstriimung, 
welche durch die Bedingung der Masse- und Energieerhaltung an der Phasengranze gekoppelt sind. 

Mit Hilfe van Inte~~ve~a~~ wird eine N~er~gsl~sung angegeben, die Ergebnisse stimmen mit 
den exakten L&ungen, die fiir GrenzBlle bekannt sind, iiberein. 

RJIMIIHBE HJIOBYYECTH HA OBPABOBAHME TBEPAOI’O OCAUHA, 
HAMEP3AlOlBEPO HA TBEPAOH BEPTBKAJIbHOR HOBEPXHOCTB 

&UWT&qfW--CKOpOCTb pocTa II pacnpefienewae B npocTpamTse ocaaKa, saTsepReBaIo4efo 
B~~e~CTB~e KpMCTa3I_JI~3arjllrHHaBepT~KanbHO~nOBepXHOCTI~,paCC~aTM3aeTCRaHa~aTEtseCKll 
i(sIrr CJIyWR IIepeHOCa TeIUIa Ha ~B~~y~e~C~ 3C~e~CTB~e eCTeCTBeHH0~ UOHBeK~~K B 
H(EIAKOCTl4 rpaHHl$e pa3neJIa f&3. ~OK33aHO,'iTO FIpH OlipeAeJleHHblX yCJIOBlGIX MORG?T 6bITb 
mmom30BaKa MaTeMaTmecKan MoReJIb, 0nmbsbamlilaH nepexomibm 0nHoMepHanCt‘ npouecc 
TeIlJIOIIpORO~HOCTH M KBa3ACTaUHOHapHbIfi AByMepHbIi% IIpOUeCC KOHBeKUHH, KOTOpbIe 
o6’be~mmoTcH B cany Tpe6OBaHnti COXpaHeHElR MaCCbI R 3Heprm Ha rpaHIl4e pasnena @aa. 
nyTeM HHTeI'paJIbHbIX npeO6pa30BaHnfi IIOJQ'WHO npu6Jnimemioe PeUIeHae. Pe3yJIbTaTbl 

cornacymTcff e npe~enbHbmz9 cayrafxm,nmi Ko~opb~x m3ecTH%TowbIe perueam. 


